Arkusfunktionen

Arkusfunktionen
Ạrkusfunktionen,
 
zyklometrische Funktionen, die Umkehrfunktionen der Winkelfunktionen: Arkussinus, Arkuscosinus, Arkustangens und Arkuscotangens, Funktionszeichen: arcsin, arccos, arctan und arccot (auf Taschenrechnern auch: sin-1, cos-1, tan-1 und cot-1); z. B. gehört zu der Winkelfunktion y = sin x die Arkusfunktion x = arcsin y. Eine Arkusfunktion gibt den im Bogenmaß gemessenen Winkel an, für den die zugehörige Winkelfunktion vorbestimmte Werte annimmt; z. B. ist arcsin 1 = π/2, da sin (π/2) = 1. Die grafische Darstellung der Arkusfunktion erhält man aus denen der zugehörigen Winkelfunktionen durch Spiegelung an der Geraden y = x. Wegen der Periodizität der Winkelfunktion kann man diese jeweils nur bei Einschränkung des Definitionsbereiches auf geeignete Intervalle umkehren. Je nach Wahl der Intervalle ergeben sich verschiedene Wertevorräte der Umkehrfunktionen. Insbesondere sind ihre Hauptwerte durch
 
festgelegt. Die dadurch gegebenen Hauptzweige sind in Bild 1 und Bild 2 dargestellt. Für die Hauptwerte der Arkusfunktion gelten die Beziehungen
 
und die Formeln

Universal-Lexikon. 2012.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Arkusfunktion — Arkusfunktionen (von lat. arcus „Bogen“) sind, wie es ihre alternative Bezeichnung als inverse Winkelfunktionen andeutet, Umkehrfunktionen trigonometrischer Funktionen, die zu einem gegebenen Winkelfunktionswert den zugehörigen Winkel im Bogenmaß …   Deutsch Wikipedia

  • Goniometrische Funktion — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Halbwinkelformeln — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Trigonometrische Funktion — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Trigonometrische Funktionen — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Winkelbeziehung — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Winkelfunktion — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Winkelfunktionen — Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in rechtwinkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel… …   Deutsch Wikipedia

  • Acos — Der Arkussinus (geschrieben arcsin, asin oder sin − 1) ist die Umkehrfunktion der eingeschränkten Sinusfunktion; der Arkuskosinus (geschrieben arccos, acos oder cos − 1) ist die Umkehrfunktion der eingeschränkten Kosinusfunktion. Beide Funktionen …   Deutsch Wikipedia

  • Arcsin — Der Arkussinus (geschrieben arcsin, asin oder sin − 1) ist die Umkehrfunktion der eingeschränkten Sinusfunktion; der Arkuskosinus (geschrieben arccos, acos oder cos − 1) ist die Umkehrfunktion der eingeschränkten Kosinusfunktion. Beide Funktionen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”